Sáng kiến kinh nghiệm năm học
Trường THPT Phù Cừ
Giáo viên; Quách Đăng Thăng – Tổ Toán – Tin 2
NỘI DUNG
I. CƠ SỞ LÝ THUYẾT
Muốn tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của một đại lượng hình
học biến thiên f ta có thể sử dụng một trong các phương pháp sau:
1. Vận dụng các kết quả hình học cơ bản để so sánh trực tiếp f với một đại
lượng không đổi cho trước. Sau đây là một vài kết quả cơ bản:
a.
A, B,C, AB + BC
CA. Đẳng thức xảy ra khi và chỉ khi A, B, C thẳng
hàng theo thứ tự đó.
b. Nếu
ABC vuông tại A thì: AB < BC và AC < BC.
c. Trong một tam giác, đối diện với góc lớn hơn là cạnh lớn hơn và ngược lại.
d. Trong tất cả các đoạn thẳng vẽ từ một điểm M đến mặt phẳng
(hoặc đường thẳng d) không chứa điểm M thì đoạn vuông góc là đoạn thẳng
ngắn nhất.
e. Đoạn thẳng vuông góc chung của hai đường thẳng chéo nhau là đoạn thẳng
ngắn nhất nối liền hai điểm lần lượt thuộc hai đường thẳng đó.
2. Nếu f được biểu thị thành một biểu thức của nhiều đại lượng biến thiên và
các đại lượng này lại được ràng buộc với nhau bởi một hệ thức liên hệ thì ta sử
dụng các bất đẳng thức đại số để tìm giá trị lớn nhất (giá trị nhỏ nhất) của f. Các
bất đẳng thức thường dùng là:
a. Bất đẳng thức Cô si:
0,
1 1
1 2
n
n
+ +
≥
…
Dấu đẳng thức xảy ra
b. Bất đẳng thức Bu–nhi-a-côp-xki:
,
,
+ + ≤ + + +
Dấu bằng xảy ra khi
k
R,
= = =
3. Nếu f được biểu thị bằng một hàm số của một biến số x thì ta sử dụng
phương pháp khảo sát hàm số để tìm giá trị lớn nhất (giá trị nhỏ nhất) của hàm
số đó trên miền xác định của nó, từ đó suy ra giá trị lớn nhất (giá trị nhỏ nhất)
của f.
4. Phương pháp tọa độ trong không gian
a. Trong không gian oxyz: Xét hệ toạ độ Đề các vuông góc giả sử A(x
1
,y
1
,z
1
),
B(x
2
,y
2
,z
2
) thì
và