2
CHUYÊN ĐỀ 1 : ĐA THỨC
B. CÁC PHƯƠNG PHÁP VÀ BÀI TẬP:
I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ:
* Định lí bổ sung:
+ Đa thức f(x) có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số tự do, q là ước
dương của hệ số cao nhất
+ Nếu f(x) có tổng các hệ số bằng 0 thì f(x) có một nhân tử là x – 1
+ Nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử
bậc lẻ thì f(x) có một nhân tử là x + 1
+ Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì
f(1)
a – 1
và
f(-1)
a + 1
đều là số
nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do
1. Ví dụ 1: 3x
2
– 8x + 4
Cách 1: Tách hạng tử thứ 2
3x
2
– 8x + 4 = 3x
2
– 6x – 2x + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2)
Cách 2: Tách hạng tử thứ nhất:
3x
2
– 8x + 4 = (4x
2
– 8x + 4) – x
2
= (2x – 2)
2
– x
2
= (2x – 2 + x)(2x – 2 – x)
= (x – 2)(3x – 2)
2. Ví dụ 2: x
3
– x
2
– 4
Ta nhân thấy nghiệm của f(x) nếu có thì x =
1; 2; 4 , chỉ có f(2) = 0 nên x = 2 là nghiệm
của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện
một nhân tử là x – 2
Cách 1: x
3
– x
2
– 4 =
32 2 2
x 2x x 2x 2x 4 x x 2 x(x 2) 2(x 2)
=
2
x2x x2
Cách 2:
32 3 2 3 2
xx4x8x4x8 x4
2
(x 2)(x 2x 4) (x 2)(x 2)
=
22
x 2 x 2x 4 (x 2) (x 2)(x x 2)
3. Ví dụ 3: f(x) = 3x
3
– 7x
2
+ 17x – 5
Nhận xét:
1, 5 không là nghiệm của f(x), như vậy f(x) không có nghiệm nguyên. Nên
f(x) nếu có nghiệm thì là nghiệm hữu tỉ
Ta nhận thấy x =
1
3
là nghiệm của f(x) do đó f(x) có một nhân tử là 3x – 1. Nên
f(x) = 3x
3
– 7x
2
+ 17x – 5 =
32 2 32 2
3x x 6x 2x 15x 5 3x x 6x 2x 15x 5
=
22
x (3x 1) 2x(3x 1) 5(3x 1) (3x 1)(x 2x 5)
Vì
22 2
x2x5(x2x1)4(x1)4 với mọi x nên không phân tích được
thành nhân tử nữa
4. Ví dụ 4:
x
3
+ 5x
2
+ 8x + 4
Nhận xét: Tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử
bậc lẻ nên đa thức có một nhân tử là x + 1
x
3
+ 5x
2
+ 8x + 4 = (x
3
+ x
2
) + (4x
2
+ 4x) + (4x + 4) = x
2
(x + 1) + 4x(x + 1) + 4(x + 1)